Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xue-Li Niu, ${ }^{\text {a,b,c }}$ Jian-Min Dou, ${ }^{\text {b }}$ Chang-Wen Hu, ${ }^{\text {a,c* }}$ Da-Cheng Li $^{\text {b }}$ and Da-Qi Wang ${ }^{\text {b }}$
${ }^{\text {a }}$ The Institute for Chemical Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China, ${ }^{\mathbf{b}}$ School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China, and ${ }^{\mathrm{c}}$ Department of Chemistry, Beijing Institute of Technology, Beijing 100081, People's Republic of China

Correspondence e-mail: cwhu@bit.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.044$
$w R$ factor $=0.132$
Data-to-parameter ratio $=12.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
A binuclear manganese(II) complex: di- μ -acetato- $\kappa^{4} O: O^{\prime}$-bis[bis(1,10-phenanthroline$\left.\kappa^{2} N, N^{\prime}\right)$ manganese(II)] bis(perchlorate)

The title binuclear manganese(II) complex, $\left[\mathrm{Mn}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\right.$ $\left.\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, has been synthesized by the reaction of manganese(II) acetate and tetra- n-butylammonium manganate(VII) with 1,10-phenanthroline in a mixed solvent of acetic acid, ethanol and pyridine. In the centrosymmetric cation, the two $\mathrm{Mn}^{\mathrm{II}}$ atoms are linked to each other by the four O atoms of two acetate ions. Each $\mathrm{Mn}^{\mathrm{II}}$ atom adopts a sixcoordinate geometry and the six coordinating atoms form a distorted octahedron.

Comment

The photosystem II oxygen-evolving complex (PSII OEC) found in the chloroplast thylakoid membranes of higher plants and algae catalyzes the splitting of water. The process is generally believed to occur on four or two manganese aggregates (Arulsamy et al., 1994). Owing to their relevance to the catalytic centre of the photosystem, binuclear manganese complexes have become the subjects of intensive research. Some binuclear manganese complexes have been synthesized, including some with two O-atom bridges (Tan et al., 1996; Goodwin et al., 2004), O-atom and $\mathrm{OAc}^{-}\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)$mixed bridges (Arulsamy et al., 1994; Oberhausen et al., 1993; Sheats et al., 1987; Wieghardt et al., 1985), isophthalate bridges (Tan et al., 1997) and two OAc^{-}bridges (Oshio et al., 1993; Ishida et al., 2001; Iriller et al., 2002). We report here the title binuclear manganese(II) complex $\left[\mathrm{Mn}_{2}\left(\mu-\mathrm{OAc}^{-}\right)_{2}(\text { phen })_{4}\right] \cdot\left(\mathrm{ClO}_{4}\right)_{2}$ (phen $=1,10$-phenanthroline), (I).

(I)

The molecular structure and a packing diagram of (I) are shown in Figs. 1 and 2, respectively. The manganese complex is a centrosymmetric cation with an $\mathrm{Mn} \cdots \mathrm{Mn}$ separation of 4.588 (2) \AA. The two $\mathrm{Mn}^{\text {II }}$ atoms are bridged by two OAc^{-} ligands. Four N atoms of two phen ligands and two O atoms from two OAc^{-}anions coordinate each $\mathrm{Mn}^{\mathrm{II}}$ atom to form a distorted octahedron. Atoms N1, N2, O1 and N4 form the equatorial plane, the $\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 1, \mathrm{~N} 1-\mathrm{Mn} 1-\mathrm{O} 1, \mathrm{O} 1-$

Received 28 July 2005 Accepted 1 September 2005 Online 7 September 2005
$\mathrm{Mn} 1-\mathrm{N} 4$ and $\mathrm{N} 4-\mathrm{Mn} 1-\mathrm{N} 2$ bond angles being 72.62 (9), 162.44 (9), 102.61 (8) and 163.76 (9$)^{\circ}$, respectively. Atoms N3 and O 2 lie in the axial positions with an $\mathrm{N} 3-\mathrm{Mn} 1-\mathrm{O} 2$ angle of $166.39(8)^{\circ}$.

Experimental

$\mathrm{Mn}\left(\mathrm{OAc}^{-}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.815 \mathrm{mmol})$ was dissolved in a mixed solvent (3 ml pyridine, 12 ml acetic acid, 20 ml EtOH); fresh $\left[\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right]\left[\mathrm{MnO}_{4}\right](0.315 \mathrm{mmol})$ was added slowly with continuous stirring and then $\mathrm{NaClO}_{4}(0.565 \mathrm{mmol})$ was added. After 1 h , solid phen (2.0 mmol) was added to the reaction solution with continuous stirring. The final mixture was filtered, and the filtrate was layered with diethyl ether. After three weeks, a red pole-shaped crystal of (I) was obtained (m.p. $>573 \mathrm{~K}$). Analysis calculated for $\mathrm{C}_{52} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{Mn}_{2} \mathrm{~N}_{8} \mathrm{O}_{12}$: C 54.37, H3.31, N 9.76%; found: C $54.23, \mathrm{H} 3.25$, N 9.71%. Selected FT-IR (KBr, cm^{-1}): v 3072 (m), $3000(s), 1625$ (m), 1567 (s), 1516 ($s), 1494$ (m), 1094 ($s), 865$ (w), $848(s), 770(w)$, 728 (s).

Crystal data

$\left[\mathrm{Mn}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	$D_{x}=1.506 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1147.68$	Mo $K \alpha$ radiation
$\begin{aligned} & \text { Monoclinic, } P 2_{1} / c \\ & a=9.5474(12) \AA \end{aligned}$	Cell parameters from 5713 reflections
$b=14.1858$ (18) \AA	$\theta=2.6-27.6^{\circ}$
$c=18.802$ (2) \AA A	$\mu=0.68 \mathrm{~mm}^{-1}$
$\beta=96.224$ (2) ${ }^{\circ}$	$T=293$ (2) K
$V=2531.5(5) \AA^{3}$	Pole, red
$Z=2$	$0.45 \times 0.38 \times 0.31 \mathrm{~mm}$
Data collection	
Siemens SMART CCD areadetector diffractometer	4444 independent reflections 3681 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.031$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h=-10 \rightarrow 11$
$T_{\text {min }}=0.751, T_{\text {max }}=0.818$	$k=-16 \rightarrow 13$
12909 measured reflections	$l=-22 \rightarrow 22$

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.132$
$S=1.01$
4444 reflections
344 parameters
H -atom parameters constrained
$D_{x}=1.506 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5713
reflections
$\theta=2.6-27.6^{\circ}$
$\mu=0.68 \mathrm{~mm}$
$T=293$ (2) K
$0.45 \times 0.38 \times 0.31 \mathrm{~mm}$

4444 independent reflections
3681 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=25.0^{\circ}$
$k=-16 \rightarrow 13$
$l=-22 \rightarrow 22$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0794 P)^{2}\right. \\
\quad+1.191 P] \\
\quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.64 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.33 \mathrm{e}^{-3}
\end{aligned}
$$

The H atoms on the ligands were positioned geometrically and refined as riding $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for aromatic H atoms, and $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms].

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Fund Council of China (NSFC, grant Nos. 20331010, 20271007 and

Figure 1
The title complex, with the atomic numbering scheme and displacement ellipsoids at the 30% probability level. H atoms have been omitted for clarity. Unlabelled atoms are related to labelled atoms by the symmetry operator (1-x, $-y,-z$).

The packing of the title complex viewed along the a axis. H atoms have been omitted.
90406002) and the Specialized Research Fund for the Doctoral Programme of Higher Education (SRFDP, grant No. 20030007014).

References

Arulsamy, N., Glerap, J., Hazell, A., Hodgson, D. J., McKenzie, C. J. \& Toftlund, H. (1994). Inorg. Chem. 33, 3023-3025.
Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Goodwin, J. C., Price, D. J. \& Heath, S. L. (2004). Dalton Trans. pp. 2833-2835. Iriller, M. U., Hsieh, W. Y., Pecoraro, V. L., Rompel, A. \& Krebs, B. (2002). Inorg. Chem. 41, 5544-5554.
Ishida, T., Mitsubori, S. I., Nogami, T., Takeda, N., Ishikawa, M. \& Iwamura, H. (2001). Inorg. Chem. 40, 7059-7064.

Oberhausen, K. J., O'Brien, R. J., Richardson, J. F., Buchanan, R. M., Costa, R., Latour, J. M., Tsai, H. L. \& Hendrickson, D. N. (1993). Inorg. Chem. 32, 4561-4565.
Oshio, H., Ino, E., Mogi, I. \& Ito, T. (1993). Inorg. Chem. 32, 5697-5703.
Sheats, J. E., Czernuszewicz, R. S., Dismukes, G. C., Rheingold, A. L., Petrouleas, V., Stubbe, J., Armstrong, W. H., Beer, R. H. \& Lippard, S. J. (1987). J. Am. Chem. Soc. 109, 1435-1444.

metal-organic papers

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA

Tan, X. S., Sun, J., Xiang, D. F. \& Tang, W. X. (1997). Inorg. Chim. Acta, 255, 157-161.
Tan, X. S., Tang, W. X. \& Sun, J. (1996). Polyhedron, 16, 2671-2675
Wieghardt, K., Bossek, U., Ventur, D. \& Weiss, J. (1985). J. Chem. Soc. Chem. Commun. pp. 347-349.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

